Detecting Anatomical Leg Length Discrepancy Using the Plug-in-Gait Model
نویسندگان
چکیده
Leg length discrepancy (LLD) is a significant factor influencing several pathological conditions. Gait analysis is based on biomechanical gait models calculating joint kinematics; however, no previous study has validated its ability to detect anatomical LLD. The aim of the present study was to compare the validity of the Vicon® Plug-in-Gait-model (PGM) in measuring femur and tibia segmental length discrepancy with measurements attained by X-ray. Fifteen participants with suspected leg length discrepancies underwent a lower limb X-ray and a standing calibration trial using a motion analysis system (Vicon®, Oxford Metrics, UK). Femur and tibia segment lengths were deducted from both measurements. No differences were found when measuring the discrepancies between sides for the femur (p = 0.3) and tibia (p = 0.45) segmental length. A high correlation was found between methods (r = 0.808–0.962, p < 0.001), however, a significant difference was observed when measuring the femur and tibia length (p < 0.0001). PGM was found to be a valid model in detecting segmental length discrepancy when based on the location of the joint centers compared to X-ray. A variance was noted in the femur and tibial segmental length. The impact of this inconsistency in segmental length on kinematics and kinetics should be further evaluated.
منابع مشابه
Hip joint load in relation to leg length discrepancy
OBJECTIVE Leg length discrepancy is common both in healthy subjects and after total hip arthroplasty (THA). Studies that evaluated leg length following THA have demonstrated a notable inconsistency in restoring leg length. The effects concerning joint load during gait is however not well known. The purpose of this study was to use three-dimensional (3D) gait analysis to evaluate joint load duri...
متن کاملLeg Length Discrepancy: Assessment and Secondary Effects
Leg length discrepancy can be noticed commonly in the general population occurring naturally without any secondary side effects it also can be noticed in some patient after surgical treatment of fractures or joint replacement surgery. The presence of this discrepancy can be assessed clinically and can be precisely measured using imaging techniques. LLD can badly affect the lower back, pelvis, h...
متن کاملA method to calculate the centre of the ankle joint: a comparison with the Vicon Plug-in-Gait model.
BACKGROUND In gait analysis, calculation of the ankle joint centre is a difficult task. The conventional way to calculate the ankle joint centre is using the Vicon Plug-in-Gait model. The present study proposes a new model, which calculates the joint centre from two markers positioned over the medial and lateral malleoli (i.e. Two-marker-model). METHODS In order to compare the proposed model ...
متن کاملFunctional scoliosis caused by leg length discrepancy
INTRODUCTION Leg length discrepancy (LLD) causes pelvic obliquity in the frontal plane and lumbar scoliosis with convexity towards the shorter extremity. Leg length discrepancy is observed in 3-15% of the population. Unequalized lower limb length discrepancy leads to posture deformation, gait asymmetry, low back pain and discopathy. MATERIAL AND METHODS In the years 1998-2006, 369 children, a...
متن کاملComparing Gait with Multiple Physical Asymmetries Using Consolidated Metrics
Physical changes such as leg length discrepancy, the addition of a mass at the distal end of the leg, the use of a prosthetic, and stroke frequently result in an asymmetric gait. This paper presents a metric that can potentially serve as a benchmark to categorize and differentiate between multiple asymmetric bipedal gaits. The combined gait asymmetry metric (CGAM) is based on modified Mahalanob...
متن کامل